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Methods are described for separating the effects of core and surface bonding in computations of the molecular orbital energy 
parameters in the globally delocalized deltahedral boranes B,H;- ( n  = 6, 7, 10, 12). This provides a basis for comparison of 
predictions from a simple graph-theory-derived model with Hoffmann-Lipscomb LCAO-MO extended Hiickel computations and 
self-consistent molecular orbital computations of Armstrong, Perkins, and Stewart. In the octahedral B6Hs2- the graph-theory- 
derived methods lead to the same numbers of skeletal bonding and antibonding orbitals as the computational methods, thereby 
confirming the inherent validity of simple graph-theory-derived methods in the treatment of the large variety of systems based 
on boron and/or metal octahedra. However, in the icosahedral B12Hi22- the graph-theory-derived method leads to only one 
core-bonding orbital in contrast to the four core-bonding orbitals found in the computational methods after removal of the effects 
of core-surface mixing. However, core-surface mixing makes three of these originally four core-bonding orbitals antibonding 
so that the graph-theory-derived method gives the correct results despite this fundamental flaw. In the cases of the less symmetrical 
pentagonal-bipyramidal B,H,*- and 4.4-bicapped square-antiprismatic Bl0HIo2-, separating the effects of core and surface bonding 
leads to significant uncertainties. However, a reasonable method for treating these difficulties in the simplest computations on 
BloHlo2- suggests essential agreement of the predictions of the graph-theory-derived method with the computational results. On 
the other hand, the case of B7HT2- resembles that of B12H,t- in that the graph-theory-derived method agrees with the computational 
results only after adjustments for coresurface mixing. 

Introduction 
In recent years methods based on graph theory have been shown 

to be very useful for the study of the chemical bonding topology 
in polyhedral boranes, carboranes, and metal Sub- 
sequent work has shown this approach to be very effective in 
relating electron count to cluster shape for diverse boranes and 
metal clusters, using a minimum of computation. Systems treated 
explicitly by this approach include post-transition-element clus- 
t e r ~ , ~ , ~  osmium carbonyl clusters,6 gold platinum 
carbonyl rhodium clusters having fused polyhedra,lOJ 
and early-transition-metal halide  cluster^.^^^'^ In addition, the 
chemical bonding topology as elucidated by such graph-theory- 
derived methods appears to relate to superconducting properties 
of infinitely extended systems as demonstrated by the application 
to such systems based on metal cluster structures, including the 
ternary molybdenum chalcogenides (Chevrel phases)13,14 and 
ternary lanthanide rhodium borides.l3.l5 

In view of the broad application of these graph-theory-derived 
methods for the study of chemical bonding topology in diverse 
systems, it is important to relate such methods to various com- 
putational approaches for the treatment of the same systems. An 
initial effort in this area was recently reported16 that provided a 
comparison between graph-theoretical and extended Huckel 
methods for the study of chemical bonding in octahedral and 
icosahedral boranes. This paper both extends the scope of such 

comparisons and defines the limits of the ability to make such 
comparisons. In this connection such comparisons are restricted 
in this paper to boranes in order to avoid the considerable com- 
plication of the d orbitals in transition-metal systems, which, 
because of mixing effects, appears to make intractable any com- 
parisons of the type discussed in this paper. Nevertheless, 
well-known isolobal analogies"*'* between boranes and carboranes 
on the one hand and transition- and post-transition-metal clusters 
on the other hand justify the use of analogous chemical bonding 
models for all of these types of systems so that the general ob- 
servations in this paper are relevant to the diverse types of systems 
treated by topological and graph-theoretical methods. 
Topology and Hiickel Theory 

The chemical bonding topology can be represented by a graph 
in which the vertices correspond to atoms or orbitals participating 
in the bonding and the edges correspond to bonding relationships. 
The adjacency matrixlg A of such a graph can be defined as 
follows: 

AJj = 0 if i = j 
= 1 if i and j are connected by an edge 
= 0 if i and j are not connected by an edge (1) 

The eigenvalues of the adjacency matrix are obtained from the 
following determinantal equation: 

IA - xII = 0 (2) 
where I is the unit matrix (Z,i = 1 and ZJ, = 0 for i # j ) .  These 
eigenvalues are closely related to the energy levels as determined 
by Hiickel 
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IH - ESI = 0 (3) 
In eq 3 the energy matrix H and the overlap matrix S can be 
resolved into the unit matrix I and the adjacency matrix A as 
follows: 

H = a1 + PA (4a) 
S = I + S A  (4b) 
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Table I. Core and Surface Orbitals for Deltahedra Having Only Degree 4 and Degree 5 Vertices 
no. symmetry 

point ver- 
deltahedron group tices edges faces core orbitals‘ surface orbitals’ 

octahedron o h  6 12 8 AI,* + T I ,  + E,* (2) Ti, + T2g* + T2u* + Ti,* (3) 
pentagonal bipyramid DSh 7 15 10 2Al* + El’ + E; + A; (1 )  Al) + 2El’ + E; + A2” + 2El”* + E;* (3) 
bisdisphenoid (“D2d D2d 8 18 12 2AI + 2B2 + 2E (0) 2Al + 2A2* + 2BI* + 2B2 + 4E (2) 

dodecahedron”) 
4,4,4-tricapped trigonal prism D3h 9 21 14 2AI‘ + 2E’ + A2“ + E’’ (0) A,’ + 2A;* + 3E’ + AI”* + 2 A 7  + 3E” (2) 
4,4-bicapped square antiprism Ai + A2* + B,* + B2 + 3El + 2E2 + 3E3 (2) D4d 10 24 16 2A1 + 2B2 + E, + E2 + El (0) 
icosahedron I h  12 30 20 As* + TI, + Tzu* + H, (2) TI, + Hg + G,* + Gg* + Hu* + TI,* (4) 

‘“Pure” core and surface orbitals are starred, and the numbers of such orbitals for each deltahedron are given in parentheses. 

The energy levels of the system are thus related to the eigenvalues, 
x ,  of the adjacency matrix A (eq 2) as follows: 

a + xp  
1 i xs 

E = -  ( 5 )  

In eq 5 the three parameters a, 0, and S are needed to relate the 
eigenvalues x to the corresponding energies E .  However, any 
actual system provides far too few relationships to determine fully 
all of these three parameters so that all actual systems are un- 
derdetermined. Therefore, some assumptions concerning the values 
of a, /3, and S are necessary for any comparisons to be feasible. 
If such assumptions do not affect the signs of the energies E, then 
qualitative chemical inferences using these assumptions will be 
valid. A similar philosophy but different mathematics is involved 
in some qualitative approaches to energy-level distributions in 
planar systems recently developed by S i n a n o @ ~ . ~ ~ * ~ ~  

The first simplifying assumption, and one which is alway made, 
is a zero value for the parameter S. This reduces eq 5 to the linear 
equation 

E = a + x p  (6) 
and reduces from 3 to 2 the number of parameters needed to 
determine energy levels from the eigenvalues. This level of sim- 
plification is already sufficient for meaningful comparisons of this 
topological approach to computational approaches in octahedral 
and icosahedral boranes, provided that energies of all of the 
molecular orbitals, antibonding as well as bonding and nonbonding, 
are available. In Hiickel theory the parameter a is also taken 
to be zero so that eq 6 reduces further to 

E = x @  (7) 
In this case the energy levels are directly proportional to the 
eigenvalues of the adjacency matrix. The previous paper16 com- 
pared the graph-theory-derived approach only with the original 
Hoffmann-Lipscomb LCAO-MO extended Hiickel computa- 
t i o n ~ * ~ , ~ ’  where a = 0 and eq 7 can be used. This paper extends 
the sophistication of the computations with which the comparison 
of graph-theory-derived methods is made to computations where 
a # 0 and eq 6 rather than eq 7 is used. 
Globally Delocalized Deltahedra 

The polyhedral boranes discussed in this paper exhibit globally 
delocalized and are based on deltahedra having only 
degree 4 and degree 5 vertices. In this context a deltahedron is 
defined as a polyhedron in which all faces are triangles and the 
degree of a vertex is the number of edges meeting at  that vertex. 
The six deltahedra having only degree 4 and degree 5 vertices are 
depicted in Figure 1, and some of their properties are listed in 
Table I. A vertex boron atom in such deltahedral boranes uses 
three of its four valence orbitals for skeletal (intrapolyhedral) 
bonding, leaving one valence orbital as an external orbital to bond 
to the external group, typically a monovalent group such as hy- 
drogen or halogen. A major achievement of the graph-theory- 
derived approach to the chemical bonding topology in globally 
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Figure 1. The six deltahedra having only degree 4 and degree 5 vertices 
listed in Table I. 

delocalized systems is the demonstration of the close analogy 
between the bonding in two-dimensional planar aromatic systems 
such as benzene and that in three-dimensional deltahedral boranes 
and ~arboranes.’-~ In such systems the three internal orbitals on 
each vertex atom are partitioned into two twin internal orbitals 
(called tangential in some treatmentsz8) and a unique internal 
orbital (called radial in some treatments28). Pairwise overlap 
between the 2n twin internal orbitals is responsible for the for- 
mation of the polygonal or deltahedral framework and leads to 
the splitting of these 2n orbitals into n bonding and n antibonding 
orbitals. The magnitude of this splitting is designated as 2& where 
/3, relates to the parameter ,8 in eq 4a, 5 ,  6, and 7. This portion 
of the chemical bonding topology can be represented by a dis- 
connected graph having 2n vertices corresponding to the 2n twin 
internal orbitals and n K2 components; a K2 component has only 
two vertices joined by an edge. The dimensionality of this bonding 
of the twin internal orbitals is one less than the dimensionality 
of the globally delocalized system.29 Thus, in the case of the 
two-dimensional planar polygonal systems such as benzene, the 
pairwise overlap of the 2n twin internal orbitals leads to the 
a-bonding network, which may be regarded as a collection of n 
onedimensional bonds along the perimeter of the polygon involving 
adjacent pairs of polygonal vertices. The n bonding and n an- 
tibonding orbitals correspond to the u-bonding and o*-antibonding 
orbitals, respectively. In the case of the three-dimensional del- 
tahedral systems, the pairwise overlap of the 2n twin internal 
orbitals results in bonding over the two-dimensional surface of 
the deltahedron, which may be regarded as topologically ho- 
me om or phi^^^ to the sphere. 

The equal numbers of bonding and antibonding orbitals formed 
by painvise overlap of the twin internal orbitals are supplemented 
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by additional bonding and antibonding molecular orbitals formed 
by global mutual overlap of the n unique internal orbitals. This 
bonding topology can be represented by a graph G in which the 
vertices correspond to the vertex atoms of the polygon or delta- 
hedron, or equivalently their unique internal orbitals, and the edges 
represent pairs of overlapping unique internal orbitals. In the case 
of the deltahedral systems, graph G is not the graph of the actual 
deltahedron (more precisely, its l-skeleton3I) but instead the 
so-called complete graph K, defined below. The relative energies 
of the additional molecular orbitals arising from such overlap of 
the unique internal orbitals are determined from the eigenvalues 
x of the adjacency matrix A of graph G by using /3 or, more 
specifically, /3, as the energy unit (eq 2-7). In the case of benzene 
graph G is the c6 graph (the 1-skeleton of the hexagon) which 
has three positive and three negative eigenvalues corresponding 
to the three r-bonding and three r*-antibonding orbitals, re- 
spectively. In the case of a globally delocalized deltahedron having 
n vertices, such as found in the deltahedral boranes B,H?- and 
the carboranes C2B,2Hn (6 I n I 12), graph G is the complete 
graph K, in which each of the vertices has an edge going to every 
other vertex, leading to a total of n(n - 1)/2 edges.32 This 
corresponds to an n-center bond at  the center (core) of the del- 
tahedron formed by the overlap of each unique internal orbital 
with every other unique internal orbital. Regardless of the value 
of n, the complete graph K, has only one positive eigenvalue, 
namely n - 1, and n - 1 negative eigenvalues, namely -1 each, 
indicating that the n-center core bond in a globally delocalized 
deltahedron leads to only one new bonding molecular orbital. The 
sum of the n bonding orbitals arising from the surface bonding 
of the twin internal orbitals and the single bonding orbital arising 
from the n-center core bonding of the unique internal orbitals gives 
a total of n + 1 bonding orbitals for globally delocalized deltahedra 
having n vertices. Filling these n + 1 bonding orbitals with electron 
pairs in the usual way gives a total of 2n + 2 bonding electrons 
in accord with the experimentally observed number of skeletal 
electrons required to form stable globally delocalized deltahedral 
boranes and carboranes. 

This graph-theory-derived approach to the chemical bonding 
topology of globally delocalized deltahedral boranes assumes that 
the symmetry of the skeletal bonding is the automorphism group 
of the K, complete graph of the n-center core bonding, namely 
the symmetric group S, having n!  operation^,^^ rather than the 
lower symmetry of the actual deltahedron. Thus, consider the 
octahedral borane B6H6’-. The corresponding complete graph 
& has (6)(5)/2 = 15 edges and the s6 automorphism group with 
6! = 720 operations. Among the 15 edges of I&, 12 edges represent 
overlap of the unique internal orbitals located on adjacent vertex 
atoms of the octahedron, namely a pair of atoms connected by 
one of the 12 edges of the octahedron. Such edges represent cis 
interactions. The remaining 15 - 12 = 3 edges of the K6 graph 
represent overlap of the unique internal orbitals situated on one 
of the three pairs of antipodal vertices of the octahedron. Such 
edges represent trans interactions. Use of an unweighted & graph 
to depict the core-bonding topology in an octahedron gives equal 
weights to the cis and trans interactions despite their obvious 
geometric difference. The actual maximum Oh rather than s6 
symmetry of octahedral systems will result in partial or complete 
lifting of the 5-fold degeneracy of the core-antibonding orbitals 
and the 6-fold degeneracies of the surface-bonding and surface- 
antibonding orbitals arising from application of the graph-theo- 
ry-derived model outlined above. If in an octahedral system the 
magnitudes of the cis and trans interactions are taken to be unity 
and t ,  respectively, then the proximity of t to unity can be taken 
to represent the closeness of the approximation of the graph- 
theory-derived model to the actual chemical bonding topology of 
the system. However, the previous paperI6 showed that any 
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positiue value of t for an octahedral borane such as B6H6’- leads 
to the same number of skeletal bonding orbitals as predicted by 
the graph-theory-derived method where t is effectively taken to 
be unity. 

Reduction of the symmetry from that of the symmetric groups 
S, (6 I n I 12) to the symmetry group of the actual deltahedron 
not only splits some molecular orbitals of high degeneracies but 
also leads to some mixing of the core and surface bonding. For 
example, in the case of octahedral boranes under Oh symmetry, 
the core bonding has the representation A,, + TI, + E, and the 
surface bonding has the representation TI, + T,, + T2, + TI,. 
The TI, core- and surfacebonding molecular orbitals can therefore 
overlap, leading to corresponding lowering and raising of the 
energies of these two molecular orbitals (designated as hE(T,,)). 
Therefore, the TI, orbital energies of octahedral boranes deter- 
mined by computational methods based on Oh symmetry do not 
correspond to pure core or surface bonding but also include the 
interaction hE(T,,), which represents another variable that needs 
to be evaluated before the graph-theory-derived methods can be 
compared with various computations. Thus in an octahedral 
borane such as B6Hs2- under oh symmetry, only the AI, and E, 
molecular orbitals can represent pure core bonding and the T2,, 
T2,, and TI, orbitals can represent pure surface bonding. Only 
these pure orbitals are useful for comparison of results from various 
computations with the simple predictions from the graph-theo- 
ry-derived approach obtained as outlined above. Since the E, pure 
core-bonding orbital and the Tzu and T,, pure surface orbitals are 
all antibonding orbitals, only computations giving the energies 
of not only the filled bonding orbitals but also the empty anti- 
bonding orbitals (also called ”virtual orbitals”)34 can meaningfully 
be compared with predictions from the graph-theory-derived 
method. This limitation severely restricts the range of comparisons 
that can be made since many important reported computations 
on deltahedral  borane^^^-^^ do not report all of the antibonding 
orbital energies necessary or such comparisons. If orbitals from 
the external bonding of the deltahedron are also included in the 
computation (e.g., the “4N” and “5N” computations of Hoffmann 
and Lips~omb’~*~~),  then mixing between core and external orbitals 
is also possible. The previous paper16 bypasses this potential 
difficulty by avoiding comparisons of such computations with 
results predicted by the graph-theory-derived method. This paper 
includes such comparisons of the 4N and 5N computations of 
Hoffmann and L i p s ~ o m b ~ ~ ~ ~ ~  as well as more modern 5N com- 
putations of Armstrong, Perkins, and Stewartm The similarities 
of the energies of the core and surface orbitals in the 4N and 5N 
computations of Hoffmann and Lips~omb’~,~’ to those in the 3N 
computations suggest that mixing between core and external 
orbitals belonging to the same irreducible representation is not 
large enough to prevent meaningful comparisons from being made. 
However, attempts to extend such comparisons to computations 
on octahedral transition-metal clusters (e.g., the computation on 
C O ~ ( C O ) ~ ~ ~ -  by Mingos4’) appear to fail owing to strong mixing 
between transition-metal d orbitals and skeletal deltahedral orbitals 
belonging to the same irreducible representations. 

Table I summarizes the core and surface orbitals of the six 
deltahedra having only degree 4 and degree 5 vertices. Among 
these deltahedra only the octahedron and icosahedron have as 
many as two pure core orbitals, the pentagonal bipyramid has only 
one pure core orbital, and the remaining three deltahedra have 
no pure core orbitals. For this reason, detailed comparisons 
between the results of computations and predictions from the 
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graph-theory-derived method are feasible only for the octahedral 
and icosahedral boranes. However, even the less symmetrical 
deltahedra have at least two pure surface orbitals. If these include 
both bonding and antibonding orbitals, then both a and Ps can 
be estimated from their energies and the core orbital energies can 
be compared with P,, assuming that 8, = 0,. Unfortunately, 
however, the two pure surface orbitals A, and B1 of the 10-vertex 
4,4-bicapped square antiprism, the lower symmetry deltahedron 
of Table I on which the most computations have been made, are 
both antibonding orbitals. For this reason, even the extremely 
limited comparison of computations that can be made for this 
system is only feasible for the original Hoffmann-Lipscomb 
 computation^^^,^' on BloHlo2- where a can be taken to be zero 
and thus does not have to be determined from the computed 
energies. 
Octahedral Boranes 

Symmetry-factoring methods42 described in greater detail in 
the previous paper16 indicate that the energy parameters of the 
octahedral core orbitals in B6H6,- can be determined by the 
following equations, assuming that a is zero, & is the core orbital 
energy unit, and t is the ratio of trans to cis interactions: 

(4 + l ) P C  @a) 

E(T1lJ)c = - t P c  (8b) 

(8c) 

Since the AI, and E, orbitals are pure core orbitals, the two 
equations (8a) and (8c) can be used to calculate the values of the 
two parameters t and bc corresponding to the ,??(Al,) bonding and 
E(E,) antibonding energies obtained from a given computation, 
provided a = 0 or is already known. Substitution of these cal- 
culated values for t and pc in eq 8b then gives a hypothetical value 
for E(T,,), in the absence of core-surface mixing. Comparison 
of this hypothetical value with the computed value for the TI, core 
orbitals determines AE(Tl,). 

A related approach can then be used to compare the computed 
octahedral surface orbital energy parameters with the ideal values 
arising from the graph-theory-derived method. In this case the 
ideal surface orbital energy parameters are the following, with 
@, designating the surface orbital energy unit: 

= = O S  (9a) 

= = -@S (9b) 

Reduction of the effective symmetry from the s6 automorphism 
group of the graph implied by the graph-theory-derived model 
to the actual 0, point group of a regular octahedron will make 
E(T,,) no longer equal to E(Tl,) and E(T,,) no longer equal to 
E(TIu),. On the basis of eq 9a and 9b the following appropriately 
weighted mean of the energy parameters of the pure surface 
orbitals T,,, Tzu, and TI, can be used to determine P,: 

E@,) = (-2 + O P c  

Ps = !42[-!42(E(T2J + E(Tig)) + E(T2g)I (10) 

The energy parameter E(Tl,), is not included in this mean because 
of the uncertainty in the coresurface mixing parameter hE(Tl,), 
obtained as outlined above, which must be subtracted from the 
value of E(T,,), obtained from the actual computation. 

Table I1 summarizes the results that are obtained by applying 
these methods to the molecular orbital energy parameters com- 
puted by Hoffmann and Lipscomb26 using the extended Hiickel 
method where a may be taken to be zero. The value of t falls 
in the range 0.625-0.7, as compared with 1 for equal cis and trans 
unique internal orbital interactions in the six-center core bond 
required by the I<6 graph in the ideal graph-theoryderived method. 
The value pc//3, for the ratio of the core-bonding unit & to the 
surface-bonding unit @, ranges from 1.2 to 1.3. However, some 
but not all of this discrepancy from unity can be attributed to the 
failure to include the low-energy but impure TI, surface orbital 

King 

Table 11. Molecular Orbital Energy Parameters for the Octahedral 
Borane B,HL2- 

(42) King, R. B. Theor. Chim. Acta 1977, 44, 223 

Hoffmann-Lipscomb Armstrong- 

Hiickel computations self-consistent 
Perkins-Stewart extended 

3N 4 N  5N MO computations 
Energy Parameters 

ff 0 0 0 9.8 
0.642 0.658 0.683 -10.7 P c  

8s 0.527 0.527 0.527 -8.1 

AE(Tl") 0.428 0.397 0.366 -1.2 

AI, 
TI, 

E, 

P c l P s  1.218 1.249 1.296 1.32 
t 0.625 0.660 0.700 0.944 

Core Orbitals 
2.969 3.066 3.210 -52.9 

-0.829 -0.831 -0.844 11.3 

-0.884 -0.887 -0.888 1 1 . 5  
(TI" adjusted) (-0.401) (-0.434) (-0.478) (10.1) 

Surface Orbitals 
TI" 1.023 1.130 1.433 -28.7 
(TI,, adjusted) (0.595) (0.733) (1.067) -27.5 

0.493 0.493 0.493 -8.1 
-0.416 -0.416 -0.416 7.2 

TI, -0.671 -0.671 -0.671 9.1 

T2g 
T2" 

External Orbitals (Bonding or Nonbonding) 
0.204 0.951 -15.2 

-0.144 0.337 -12.5 
E, -0.089 0.652 -16.1 

AI, 
TI, 

External Antibonding Orbitals 
-0.753 10.7 
-0.776 11.2 

A, 
TI, 
E, -0.803 11.0 

in the weighted mean of eq 10. Also, as external orbitals become 
increasingly involved as one goes from the 3N to the 4N and then 
the 5N computations, the TI, surface orbitals, even after the 
subtraction of AE(Tlu), become much more bonding than the 8, 
predicted by eq 9a, apparently owing to mixing between the TI, 
surface and T,, external orbitals. 

A similar approach can be used to treat the molecular orbital 
energy parameters of B6H6'- computed by Armstrong, Perkins, 
and Stewart40 using a self-consistent molecular orbital method 
including all valence electrons and the terminal hydrogen atoms 
(Le., a 5N computation in the terminology of Hoffmann and 
Lip~comb*~>~'). In this case a # 0 so that a must be determined 
from the computed orbital energy parameters before PC and t can 
be calculated from eq 8a and 8c. Such a determination of is 
best performed by taking the midpoint between the mean energy 
parameters of the two pure antibonding surface orbitals T,, and 
TI, and the energy parameter of the single pure bonding surface 
orbital T,,, i.e. 

a = ' E(T1$)) + (1 1) 
This equation for a is identical with eq 10 for PS except for one 
change in sign. Again, the impure TI, surface orbital is not 
included in the mean because of the uncertainty in the coresurface 
mixing parameter AE(Tlu). The Armstrong-Perkins-Stewart 
energy parameters in Table I1 are given relative to a; Le., the 9.8 
value for a obtained from eq 11 has been subtracted from the 
molecular orbital energy parameters listed in Table I of the paper 
by Armstrong, Perkins, and Stewarta to give the parameters listed 
in Table 11. 

The most striking feature of the parameters given in Table I1 
for the Armstrong-Perkins-Stewart computations is the closeness 
of such parameters to those predicted from the graph-theory- 
derived model. This is most dramatically revealed in the value 
for t of 0.944, which is very close to the ideal value of unity. Also 
the core-surface mixing of the T,, orbitals is very small in these 
computations since AE(T1,) is only -1.2 or - 11% of the unad- 
justed energy parameter for the TI, core orbital in contrast to the 
aE(T,,) of 0.366 or -43% of the unadjusted energy parameter 
for the TI, core orbital in the Hoffmann-Lipscomb 5N compu- 
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tations. The energy parameter of the bonding TI, surface orbital 
even after adjustment by -AE(Tlu) is much more strongly bonding 
( N ~ / U C , )  than the Os value expected from the graph-thmry-derived 
model apparently owing to strong mixing of this orbital with the 
external TI, orbitals. The P,/P, value of 1.32 found for the 
Armstrong-Perkins-Ste~art~~ computations is very close to the 
value of 1.296 found for the Hoffmann-Lipscomb computations.26 

The general pattern of molecular orbital energy parameters for 
the octahedral borane B6H62- (Table 11) has the AI, core-bonding 
orbital a t  much lower energies (more strongly bonding) than any 
other molecular orbital. A similar pattern of molecular orbital 
energy parameters is nor found for the Wolfsberg-Helmholtz 
molecular orbital calculations by Mingos41 on the octahedral 
transition-metal cluster co6(co)14+ in which the energy param- 
eters for 3 1 molecular orbitals, including the A,, core-bonding 
orbital, are clustered in a relatively narrow range (i.e., from 
-1.0857 to -0.9356 of the cobalt d-valence-orbital ionization 
energy). This suggests that @, << PS for these calculations on 
c o 6 ( c 0 )  Analysis of the calculated molecular orbital energy 
parameters4I for C O ~ ( C O ) ~ ~ ~  similar to those summarized in Table 
11 for B6H6,- appears unfeasible owing to uncertainties in the 
mixing of the cobalt d orbitals as well as the external orbitals with 
the Co6 skeletal orbitals, which generates far too many unde- 
termined parameters for the available number of relationships. 
Icosahedral Boranes 

The symmetry-factoring methods42 described in detail in the 
previous paper16 indicate that the energy parameters of the ico- 
sahedral core orbitals in B12H122- can be determined by the fol- 
lowing equations, assuming that a is zero, j3, is the core orbital 
energy unit, m is the ratio of the'meta (nonadjacent nonantipodal) 
to ortho (adjacent) interactions, and p is the ratio of the para 
(antipodal) to ortho interactions: 

E(A1,) = ( 5  + 5m + P)Pc 

E(T1,)C = [51'2(1 - m) - P I P ,  
EW,), = (-1 - m + P)Pc 

(1 2a) 

(12b) 

( 12c) 

E(T,,) = [-5'12(1 - m) - PIP, ( 1 2 4  
Since only the AI, and T,, orbitals are pure core orbitals, only 
the two equations (12a) and (12d) are available to calculate the 
values of the three parameters m, p ,  and 0, corresponding to the 
E(A1 ) bonding and E(T,,) antibonding energy parameters ob- 
t a i n d  from a given computation provided that a = 0 or is already 
known. This system is therefore underdetermined by one rela- 
tionship. An additional relationship between the parameters m 
and p thus must be assumed before the necessary parameters can 
be extracted from the computed energy parameters. This paper 
arbitrarily makes the assumption 

m = 2p (13) 
The analysis of the 3N computations of Hoffmann and Lipscomb26 
in the previous paperI6 suggests that this analysis is relatively 
insensitive to the assumed relation between m and p in the range 
0 I p I m. Equations 12a, 12d, and 13 are thus used to determine 
the values for the three parameters m, p ,  and PC. Equations 12b 
and 12c can then be used to calculate hypothetical values for 
E(T,,), and E(H,), in the absence of core-surface mixing. 
Comparisons of these values with the computed energy parameters 
for the T,, and H, core orbitals determined &(T,,) and &(H,). 

An approach similar to that used for the octahedral borane 
B6Hs2- can be used to estimate the surface orbital energy unit P, 
for B12H122- corresponding to a given set of computed molecular 
orbital energy parameters. The ideal surface orbital energy pa- 
rameters are related to this unit as follows: 

= E(H,), = E(Tl,), = P, (14a) 

E(Gg) = E(HJ = = -Ps ( 14b) 

Reduction of the effective symmetry from the SI, automorphism 
group of the KI2 graph implied by the graph-theory-derived model 
to the actual Ih point group of a regular icosahedron will destroy 
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Table 111. Molecular Orbital Energy Parameters for the Icosahedral 
Borane B12H12- 

Hoffmann-Lipscomb Armstrong- 
Perkins-Stewart extended 
self-consistent Hiickel computations 

3N 4N 5N MO comuutations 
Energy Parameters 

a 0 0 0 8.2 
P C  0.577 0.588 0.602 -8.9 
Ps 0.580 0.580 0.580 -7.8 
B C l A  0.993 1.013 1.038 1.141 
m (=2~) 0.403 0.418 0.441 0.597 
P 0.201 0.209 0.220 0.298 
W T I J  1.427 1.469 1.480 -15.9 
AE(H,) 0.169 0.151 0.139 1 .o 

A, 
TI, 
(T,,, adjusted) (0.654) (0.642) (0.620) (-5.4) 
H, 

Core Orbitals 
4.163 4.293 4.469 -73.7 
-0.773 -0.827 -0.860 10.4 

-0.856 -0.862 -0.873 10.6 
(Hg adjusted) (-0.693) (-0.71 1) (-0.734) 
Tzu -0.886 -0.886 -0.887 10.5 

(11.6) 

Surface Orbitals 
TI, 1.907 1.990 2.370 -43.7 

H* 
(He adjusted) (0.815) (0.956) (1.219) 

G, 
HU 

(TI,, adjusted) (0.480) (0.521) (0.890) -27.8) 

(-25.8) 
0.984 1.107 1.358 -24.8 

G" 0.518 0.518 0.518 -7.8 
-0.471 -0.471 -0.417 6.5 
-0.678 -0.678 -0.678 8.2 

TI, -0.782 -0.782 -0.782 8.7 

External Orbitals (Bonding or Nonbonding) 
0.619 1.485 -24.0 
0.150 0.619 -13.7 
-0.239 0.240 -9.5 
-0.225 0.460 -10.7 

A, 
TI, 
He 
Tzu 

A, 
TI, 
H, 
Tzu 

External Antibonding Orbitals 
-0.718 9.7 
-0.690 8.1 
-0.783 9.7 
-0.8 12 10.0 

the equalities between the molecular orbital energy parameters 
in eq 14a and 14b. On the basis of these equations the following 
appropriately weighted mean of the energy parameters of the pure 
bonding surface orbital G, and the pure antibonding surface 
orbitals G,, H,, and TI, can be used to determine 0,: 

(15) 

As in the case of the analogous calculation for the B6H6,- octa- 
hedron, the energy parameters E(H,), and E(T,,), are not included 
in this mean owing to uncertainties in estimating the coresurface 
mixing corrections AE(H,) and &(TI,). 

Table I11 summarizes the results that are obtained by applying 
these methods to the molecular orbital energy parameters of 
B12H12'- computed by Hoffmann and Lipscomb26 using the ex- 
tended Hiickel method and those computed by Armstrong, Perkins, 
and Stewart4' using a self-consistent molecular orbital method. 
In the former case a may be taken to be zero whereas in the latter 
case a is not zero but can be calculated from the following re- 
lationship by using the energy parameters of the G,, G,, H,, and 
T,, pure surface orbitals: 

a = '/z[X(E(Gg) + E(HJ + E(Tig)) + E(GJI  (16) 

The values for the parameters m and p (m = 0.4 for the Hoff- 
mann-Lipscomb computations and m = 0.6 for the Armstrong- 
Perkins-Stewart computations) are found to deviate further from 
the ideal value of unity expected from the graph-theory-derived 
method than the related parameter t for octahedral B.&'- (Table 
11) from the corresponding computations. This is in accord with 
the larger size of the icosahedron relative to that of the octahedron, 
which can generate greater differences between the core overlap 

Ps = ' / 2 [ - ' / 3 ( W , )  + E ( H J  + E(T1,)) + 
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of unique internal orbitals from adjacent vertex atoms and those 
from nonadjacent vertex atoms. In the icosahedral system the 
value of m (and thus that of p )  is closer to unity for the Arm- 
strong-Perkins-Stewart c o m p ~ t a t i o n ~ ~  than that for the Hoff- 
mann-Lipscomb computationz6 (Table HI),  as was found in the 
octahedral system for the related parameter t .  For the Hoff- 
mann-Lipscomb computation (Table 111) and to a lesser extent 
(- 14% error) also for the Armstrong-Perkins-Stewart compu- 
tations, the approximation (3, = 0, (i.e., p,/p, = 1) appears valid; 
an approximation of this type is useful for the treatment of less 
symmetrical and thus highly underdetermined deltahedra. 

By far, the most significant conclusion from the data in Table 
I11 is that the core bonding in icosahedral BIZHI?- in the absence 
of core-surface mixing generatesfour core-bonding orbitals (Al, 
+ TI,) rather than the single bonding orbital (Al,) obtained by 
using the Klz complete graph to model the core-bonding topology. 
In this sense the graph-theory-derived is incorrect for 
the icosahedron. Nevertheless, the graph-theory-derived model 
works for icosahedral boranes and carboranes because this fun- 
damental error is compensated by the TI, core-surface mixing. 
The corresponding mixing energy, AE(Tl,), is so large that the 
core TI, orbitals are raised to antibonding energies by the core- 
surface interaction so that only one core-bonding orbital, namely 
the A, orbital, remains after this interaction. This is why the 
graph-theory-derived model for icosahedral B1zH12z- leads to the 
experimentally observed skeletal electron count even though the 
assumption of the KI2  complete graph for the core-bonding to- 
pology leads to the incorrect number of core-bonding orbitals 
before core-surface mixing. 

The chemistry of gold c l u s t e r ~ ~ ~ . ~ ~  provides an important ex- 
perimental test of these ideas. Many such clusters, which can be 
called45 “porcupine compounds”, consist of a central gold atom 
(the “body” of the porcupine) surrounded by a number of pe- 
ripheral gold atoms (the “quills” of the porcupine). The p orbitals 
of the peripheral gold atoms have energies too high to function 
as twin internal orbitals for surface bonding$6 an apparent con- 
sequence of relativistic effects47 in the chemical bonding of the 
relatively heavy gold atom. Thus, the peripheral gold atoms in 
porcupine compounds form polyhedral clusters exhibiting core 
bonding (with the central gold as an interstitial atom) but no 
surface bonding7s8 Turning off the surface bonding in this way 
in the centered icosahedral 48 leads to four 
core-bonding  orbital^,^,^ as is found for BlzHIz2- when the effects 
of core-surface mixing are removed (Table 111). This point may 
also relate to the general ob~erva t ion~.~  that the overall topology 
of the n - 1 peripheral gold atoms in a centered Au, porcupine 
cluster leads to electron counts corresponding not to those expected 
for a K,, complete graph but instead to that of the polyhedron 
formed by the peripheral gold atoms. 

Less Symmetrical Deltahedral Boranes 
Attempts to extend the methods outlined above to deltahedra 

that are less symmetrical than the octahedron or icosahedron lead 
to a number of immediate difficulties. Among the deltahedra listed 
in Table I other than the octahedron and icosahedron, the pen- 
tagonal bipyramid has only one pure core orbital and the remaining 
three deltahedra have no pure core orbitals. Thus, pure core orbital 
energy parameters are not available for the calculation of the 
energy unit p,. In addition, the lower symmetries of these del- 
tahedra lead to a much larger number of independent interaction 
parameters48 between pairs of unique internal orbitals analogous 
to t for the octahedron and m and p for the icosahedron used 
above. 

(43) Schmidbaur, H.; Dash, K. C. Adu. Inorg. Chem. Radiochem. 1982,25, 
243. 

(44) Steggerda, J. J.; Bour, J. J.; van der Velden, J. W. A. Recl J .  R .  Nerh. 
Chem. SOC. 1982, 101, 164. 

(45) King, R. B. Prog. Inorg. Chem. 1972, 15, 287-473. 
(46) Nyholm, R. S .  Proc. Chem. Soc., London 1961, 273. 
(47) PyykkB, P.; Desclaux, J. P. Arc. Chem. Res. 1979, 12, 276. 
(48) Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, 

D. M. P.; Welch, A. J. J .  Chem. Sor., Chem. Commun. 1981, 201. 

Table IV. Molecular Orbital Energy Parameters from the 
Hoffmann-Lipscomb “3N” Extended Hiickel Computations for 
B,HT2- 

adjusted by 
computed by removal of 

Hoffmann and core-surface core-surface 
Lipscomb interaction interaction 

a 
P, (4 

Energy Parameters 
-0.032 ( ~ 0 )  
+O.S56 

Surface Orbitals 
weighted average 
used to determine 

-0.726 
+0.524 

+0.740 AE(AF) =: -0.184 

+ 1.420 AE(E1’)I = -0.864 
-0.508 AE(E1’)2 = -0.043 

+0.494 AE(E,‘) = +0.062 

Core Orbitals 
+3.273 
-0.8 4 7 ( p % i ~ ~ )  
-0.840 -XAE(E,’)n +0.912 
-0.851 -AE(A,”) = +0.184 
-0.845 -AE(E,’) = -0.062 

-0.556 

-0.556 
-0.556 

+0.556 

+0.556 
+0.556 
+0.556 
-0.556 

+3.273 

+0.072 
-0.847 

-0.667 
-0.907 

The best approach for obtaining useful information from the 
molecular orbital energy parameters appears to be the following 
sequence of steps: 

(1) Use standard group-theoretical methods49 to find the core 
and surface orbital irreducible representations. 

(2) Calculate the surface orbital energy unit p, from the energies 
of the pure surface orbitals by using equations analogous to eq 
10 and 15. If some of the pure surface orbitals are bonding and 
others antibonding, a for systems where a # 0 can also be cal- 
culated by using equations analogous to eq l l and 16, but such 
is not generally possible. If the pure surface orbitals are either 
all bonding or all antibonding, then only p, can be calculated and 
comparison is limited to computations where a is known by other 
methods such as in the computations of Hoffmann and Lip- 
s ~ o m b , ~ ~ , ~ ’  where a is taken to be zero. Such is the case for the 
4,4-bicapped square antiprism, where both of the pure surface 
orbitals, namely Az and Bl, are antibonding. 

(3) Estimate the other surface orbital energy parameters in the 
absence of core-surface mixing as P, (bonding) or -& (anti- 
bonding) by making assignments so that the total numbers of 
surface bonding and surface antibonding orbitals are equal, re- 
membering to include in the counts the pure surface orbitals used 
above and to allow for degeneracies. Comparison of these esti- 
mated energy parameters with the computed energy parameters 
allows estimation of the core-surface mixing parameters AE. 
Several different partitions of the surface orbitals into equal 
numbers of bonding and antibonding orbitals may be possible. 

(4) Assume p, = p,, which is a reasonable assumption in light 
of the comparisons of p, and p, independently obtained from the 
icosahedral Bl2HlZz- computations (Le., &/& = 1). 

(5) Remove the effects of core-surface mixing from the core 
orbital energy parameters by subtracting CAE obtained for all 
surface orbitals belonging to the same irreducible representation. 

(6) Express these core orbital energy parameters in terms of 

(7) Compare the core orbital energy parameter coefficients of 
& with the corresponding eigenvalues of the spectrum of the graph 
corresponding to the interactions of interest, thereby applying eq 
6 or 7. If both sets of numbers are close, then the assignments 
of surface orbitals as bonding or antibonding are probably correct. 
Otherwise, other assignments must be considered. 

Tables IV and V illustrate this procedure for the most favorable 
cases, namely the Hoffmann-Lipscomb 3N computationsz6s2’ on 
B,H72- and B1OH1Oz-, respectively, wherre a may be taken to be 

P, (-PA. 

(49) Cotton, F. A. Chemical Applications of Group Theory; Wiley: New 
York, 1971. 
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Table V. Molecular Orbital Energy Parameters from the 
Hoffmann-Lipscomb “3N” Extended Huckel Computations for 
B, “H I n2- 

adjusted by 
computed by removal of 

Hoffmann core-surface core-surface 
and Lipscomb interaction interaction 

Energy Parameters 
0 

+0.665 

Surface Orbitals 
-0.739 
-0.590 ( g i ~ ~ ~ ~ ~ $ $ c ) )  
+1.004 AE(Al) = -0.339 
+1.978 AE(B2) = -1.313 
+1.447 AE(EI)l -0.782 

-0.615 AE(EI)3 = -0.050 
+0.756 AE(E2)l -0.091 
-0.598 AE(E2)2 = -0.067 
+0.760 AE(E3)l = -0.095 
-0.327 AE(E3)z = -0.338 
-0.747 AE(E3)3 = +0.082 

+0.328 AE(E,), = +0.337 

Core Orbitals 
+3.877 assumed 0 
-0.812 -AE(AI) = +0.339 
-0.812 -‘/2AE(B2) = +0.656 
-0.850 -‘/2AE(BZ) +0.655 
-0.776 -CAE(El), +0.495 
-0.884 -EAE(E,), = +0.158 
-0.862 -CAE(E3), = +0.351 

-0.665 
-0.665 
+0.665 
+0.665 
+0.665 
+0.665 
-0.665 
+0.665 
-0.665 
+0.665 
-0.665 
-0.665 

+3.877 
-0.473 
-0.156 
-0.195 
-0.281 
-0.726 
-0.51 1 

zero and effects of mixing with external orbitals may be ignored. 
Elementary group-theoretical methods49 (Table I) show that for 
B7H72- the pure surface orbitals are A i  + 2E1” + ET and for 
BloHlo2- the pure surface orbitals are Az + B1. In the case of 
the B7H72- pure surface orbitals, the A i ,  the E;, and one of the 
El” orbitals are antibonding whereas the other El” orbital is 
bonding. The following weighted averages can be used to de- 
termine & and a: 

B s  = ‘/2[-%(E(Az’) + E(Ei”)z + E@;’)) + E(Ei”)iI = 
+OS56 (17a) 

CY = !/z[’/3(E(Ai) + E(E1”)2 + E(ET)) + E(E,” ) , ]  = 
-0.032 = 0 (17b) 

Note that the value of a found by this method (-0.032) is close 
to the assumed value of zero. In the case of BloH12- pure surface 
orbitals, both the Az and B1 orbitals are antibonding (Table V) 
so that the parameter a cannot be determined from these data 
but must be assumed to be zero. Removal of the core-surface 
interaction for the remaining surface orbitals must lead to either 
,L?, for the bonding orbitals or -& for the antibonding orbitals, with 
assignments of bonding and antibonding character being made 
to give n bonding and n antibonding orbitals for B,H:- (n = 7, 
10). This allows determination of the AE parameters describing 
the magnitudes of the core-surface interactions. The negatives 
of these corwurface interaction parameters are added to the core 
orbital energy parameters obtained from the Hoffmann-Lipscomb 
 computation^^^^^^ to give hypothetical core orbital energy param- 
eters in the absence of core-surface mixing. 

Table IV summarizes the results of this procedure for the 
pentagonal-bipyramidal B7H72-. The expected strong bonding 
AI’( 1) orbital is found with a strongly positive energy parameter. 
In addition the degenerate El’ core orbitals have slightly positive 
adjusted energy parameters whereas the remaining core orbitals 
(A1’(2), AT,  and E;) are clearly antibonding. Thus coresurface 
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mixing appears necessary for the pentagonal-bipyramidal B7H72- 
to give the single bonding and six antibonding core orbitals pre- 
dicted by the graph-theory-derived method, analogous to the 
observations on the icosahedral BIZHI;- system summarized above. 
This common feature of these two deltahedral systems may related 
in some way to the presence of a C, axis. 

Table V summarizes the results of this procedure for the 4,4- 
bicapped square-antiprismatic BloHlo2-. In this case only one of 
the ten adjusted core orbital energy parameters, namely that of 
the A l ( l )  orbital, is strongly positive whereas the other nine 
parameters, namely those of the A1(2), B2(1), B2(2), and the three 
degenerate pairs E,, E2, and E3, are weakly negative, in crude 
agreement with the spectrum of the Klo complete graph (one +9 
eigenvalue and nine -1 eigenvalues) used in the graph-theory- 
derived model for the core overlap of the ten unique internal 
orbitals in this system. 

Note, however, that in order to obtain the adjusted core orbital 
energy parameters in Table V, the core-surface interaction cor- 
rection AE(Al) is applied exclusively to the antibonding core 
orbital A1(2) whereas the core-surface interaction correction 
hE(B2) is distributed equally between the two core orbitals B2( 1) 
and Bz(2). This apparently arbitrary procedure is justified on 
the basis that the strongly bonding fully symmetric A l ( l )  core 
orbital lies at such a low energy (Le., a highly positive energy 
parameter) that it does not mix significantly with the A I  surface 
orbital. 
Summary 

This paper describes methods for separating the effects of core 
and surface bonding in computations of the molecular orbital 
energy parameters in the globally delocalized deltahedral boranes 
B,H:- (n  = 6 ,  7, 10, 12). This provides a basis for comparison 
of the results from these computations with those predicted by 
simple graph-theory-derived methods. 

The general conclusions from this comparison can be sum- 
marized as follows: 

(1) B6H6’- (octahedron): The graph-theory-derived methods 
lead to the same numbers of skeletal bonding and antibonding 
orbitals as the computational methods, thereby confirming the 
inherent validity of simple graph-theory-derived methods in the 
treatment of the large variety of systems based on boron and/or 
metal octahedra. 

(2) BlzH1;- (icosahedron): The graph-theory-derived method 
leads to only one core-bonding orbital for the icosahedron in 
contrast to the four core-bonding orbitals found in the compu- 
tational methods after removal of the effects of core-surface 
mixing. However, core-surface mixing makes three of these 
originally four core-bonding orbitals antibonding so that the 
graph-theory-derived method gives the correct results despite this 
fundamental flaw. 

(3) B7HT2- (pentagonal bipyramid) and BloH,:- (4,4-bicapped 
square antiprism): Because of a limited number of pure core and 
pure surface orbitals for deltahedra of lower symmetry than the 
octahedron and icosahedron, separating the effects of core and 
surface bonding leads to significant uncertainties. However, a 
reasonable method for treating these difficulties in the simplest 
computations on BloHloz- suggests essential agreement of the 
computational results with those predicted by graph-theory-derived 
methods. However, in the case of B7H7’-, as in the case of 
Bl2H1;-, the effects of coresurface mixing appear to be necessary 
for the computational results to agree with expectations from the 
graph-theory-derived methods. 
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